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Abstract: Using the type II near-extremal 3D-branes solution we apply the T-duality

and smeared twist to construct the supergravity backgrounds which dual to the 4D finite

temperature non-commutative dipole field theories. We first consider the zero-temperature

system in which, depending on the property of dipole vectors it may be N=2, N=1 or N=0

theory. We investigate the rotating D3-brane configurations moving on the spactimes

and show that, for the cases of N=2 and N =1 the rotating D3-brane could be blowed

up to the stable spherical configuration which is called as giant graviton and has a less

energy than the point-like graviton. The giant graviton configuration is stable only if its

angular momentum was less than a critical value of Pc which is an increasing function of

the dipole strength. For the case of non-supersymmetric theory, however, the spherical

configuration has a larger energy than the point-like graviton. We also find that the

dipole field always render the dual giant graviton to be more stable than the point-like

graviton. The relation of dual giant graviton energy with its angular momentum, which in

the AdS/CFT correspondence being the operator anomalous dimension is obtained. We

furthermore show that the temperature does not change the property of the giant graviton,

while it will render the dual giant graviton to be unstable.
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1. Introduction

Giant graviton first investigated by McGreevy, Susskind and Toumbas [1] is a rotating D3-

brane in the AdS5 × S5 spacetime, which is blowed up to the spherical BPS configuration

and has the same energy and quantum number of the point-like graviton. The configuration

is stable only if its angular momentum was less than a critical value of Pc. This expanded

brane wraps the spherical part of the S5 spacetime and is stabilized against shrinking by

the of the Ramond-Ramond (RR) gauge field. The authors in [2] had proved that the giant

gravitons are BPS configurations which preserve the same supersymmetry as the point-like

graviton. As the giant graviton has exactly the same quantum numbers as the point-like

graviton they can tunnel into each others. It was also shown in [2] that there exist “dual ”

giant graviton consisting of spherical brane expanding into the AdS part of the spacetime,

which, however, do not have an upper bound on their angular momentum due to the non-

compact nature of the AdS spacetime. While the giant graviton could tunnel into the

trivial point-like graviton the investigations had shown that there is no direct tunneling

between the giant graviton and its dual counterpart in AdS [3 – 5].

The microscopical description of giant gravitons had also been investigated in [6, 7].

The blowing up of gravitons into branes could take place in backgrounds different from
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AdS5 × S5 background, such as in the dilatonic background created by a stack of Dp-

branes [8], in the geometry created by a stack of non-threshold bound states of the type

(D(p-2), Dp) [9], in the B-filed background [10], or in the Melvin field background [11]. The

properties of the non-spherical giant was considered in [12]. The giant graviton solutions

in Frolov’s three parameter generalization of the Lunin-Maldacena background [13] had

also been investigated in a recent paper [14, 15]. In this paper we will investigate the

giant gravitons on the supergravity backgrounds which dual to the 4D finite temperature

non-commutative dipole field theories.

In section II we first construct the dual supergravity background of the finite temper-

ature non-commutative dipole theory by considering the near-horizon geometry of near-

extremal D-branes [16], after applying T-duality and smeared as that described in [17, 18].

Depending on the property of dipole vectors the theory may be N=2, N=1 or N=0 theory.

In section III we first investigate the zero temperature system and see that, for the cases

of N=2 and N =1 a rotating D3-brane configurations moving on the spacetime could be

blowed up to the stable spherical configuration. We see that the giant graviton configu-

ration is stable only if its angular momentum was less than a critical value of Pc which is

an increasing function of the dipole strength. For the case of non-supersymmetric theory,

however, the spherical configuration has a larger energy than the point-like graviton.

In section IV we first follow the Witten prescription [19] to transform the supergravity

background to the global coordinate and then use the coordinate to study the dipole effect

on the dual giant graviton. It is found that the dipole field always renders the dual giant

graviton more stable than the point-like graviton. We obtain the relation of dual giant

graviton energy with its angular momentum, which in the AdS/CFT correspondence being

the operator anomalous dimension. In section V we turn to the finite temperature system

and show that the temperature does not change the property of the giant graviton, while it

will render the dual giant graviton to be unstable. In last section we summary our results.

Note that the Giant graviton provides a very natural framework for the study of the

gauge theory/gravity correspondence [20]. After studying the zero coupling limit of N =

4 super Yang-Mills theory with gauge group U(N) the candidate operators dual to giant

gravitons had been proposed in [21 – 23]. Our investigations thus provides a correspondence

which dual to a finite temperature non-commutative dipole field theories.

2. Supergravity solutions

To find the explicit supergravity solution of D3-brane describing the finite temperature

dipole theory we could start with the following type II supergravity solution describing N

coincident near extremal D3-brane [16]

ds2 = f(r)−1/2
[

−h(r)dt2 + dx2
1 + dx2

2 + dx2
3

]

+ f(r)1/2
[

−h(r)−1dr2 + r2dΩ2
5

]

,

f(r) = 1 +
N

4

r4
, h(r) = 1 − r4

0

r4
, (2.1)

in which dr and dΩ constitute x4, . . . , x9 coordinates. The horizon is located at r = r0 and

extremality is achieved in the limit r0 → 0. A solution with r0 ≪ N is called near extremal.
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Now, as described in [17, 18], we first apply the T-duality transformation on the x3

axis. Then add a twist to the directions x4, . . . .x9 as we go around the circle of new x3

axis. This means that we replace

dxa → dxa −
9

∑

b=4

Ωabxbdx3, a = 4, . . . 9, (2.2)

in which Ω is an element of the Lie algebra SO(6). After the smeared twist along x4, . . . , x9

we finally apply the T-duality on the x3 axis. The supergravity solution becomes

ds2 = f− 1

2

(

−h(r)dt2 + dx2
1 + dx2

2 +
dx2

3

1 + r2nT MT Mn

)

+f
1

2

(

h(r)−1dr2 + r2dnT dn − r4(nT MT dn)2

1 + r2nTMT Mn

)

, (2.3)

e2φ =
1

1 + r2nTMT Mn
,

9
∑

a=4

Bpadxa = − r2dnT Mn

1 + r2nT MT Mn
, (2.4)

where n is unit vector defined by xa = rn with |n|2 = 1 and Ω ≡ e2πiM . The most general

form of matrix M can be cast to the following form [17]

M =



















0 α1 + α2 0 0 0 0

−α1 − α2 0 0 0 0 0

0 0 0 α1 + α3 0 0

0 0 −α1 − α3 0 0 0

0 0 0 0 0 α2 + α3

0 0 0 0 −α2 − α3 0



















. (2.5)

This form of matrix M breaks all supersymmetries. On the other hand for α3 = 0 we left

with 4 supercharges. For α1 = α2 = 0 we find a configuration with 8 supercharges [17].

After the evaluations the following supergravity solutions are found in the large N

limit.

(1) N = 2 theory: we let α1 = α2 = 0 and α3 = B then

ds2
10 = U2

[

−
(

1 − U4
T

U4

)

dt2 + dx2 + dy2 +
dz2

1 + B2U2 sin2 θ

]

+
1

U2

(

1 − U4
T

U4

)−1

dU2

+dθ2 + cos2 θdφ2 + sin2 θ
(

dχ2
1 + cos2 χ1dχ2

2 + sin2 χ1dχ2
3

)

−U2B2 sin4 θ
(

cos2 χ1dχ2 + sin2 χ1dχ3

)2

1 + U2B2 sin2 θ
, (2.6)

e2Φ =
1

1 + U2B2 sin2 θ
,

Bzχi
= −U2B sin2 θ

(

cos2 χ1dχ2 + sin2 χ1dχ3

)

1 + U2B2 sin2 θ
.

Thus there is a nonzero B field with one leg along the brane worldvolume and others

transverse to it. The value B in (2.6b) is proportional to the dipole length ℓ defined in the

– 3 –



J
H
E
P
1
1
(
2
0
0
7
)
0
1
5

“non-commutative dipole product” : Φa(x) ∗ Φa(x) = Φa(x − ℓb/2) Φb(x + ℓa/2) for the

dipole field Φ(x) [17]. Note that the coordinate used in (2.6a) is like that in [1], which is

slightly difference from that used in [24].

(2) N = 1 theory: we let α1 = α2 = B and α3 = 0 then

ds2
10 = U2

[

−
(

1 − U4
T

U4

)

dt2 + dx2 + dy2 +
dz2

1 + B2U2(3 cos2 θ + 1)

]

(2.7)

+
1

U2

(

1 − U4
T

U4

)−1

dU2 + dθ2 + cos2 θdφ2

+ sin2 θ
(

dχ2
1 + cos2 χ1dχ2

2 + sin2 χ1dχ2
3

)

− U2B2

1 + U2B2(3 cos2 θ + 1)

[

2 cos2 θdφ + sin2 θ
(

cos2 χ1dχ2 + sin2 χ1dχ3

)]2
,

e2Φ =
1

1 + U2B2(3 cos2 θ + 1)
,

(Bzφ, Bzχi
) = −BU2

[

2 cos2 θdφ + sin2 θ
(

cos2 χ1dχ2 + sin2 χ1dχ3

)]

1 + U2B2(3 cos2 θ + 1)
.

(3) N = 0 theory: we let α1 = α2 = α3 = B/2 then

ds2
10 = U2

[

−
(

1 − U4
T

U4

)

dt2 + dx2 + dy2 +
dz2

1 + B2U2

]

+
1

U2

(

1 − U4
T

U4

)−1

dU2

+dθ2 + cos2 θdφ2 + sin2 θ
(

dχ2
1 + cos2 χ1dχ2

2 + sin2 χ1dχ2
3

)

− U2B2

1 + U2B2

×
[

cos2 θdφ + sin2 θ
(

cos2 χ1dχ2 + sin2 χ1dχ3

)]2
, (2.8)

e2Φ =
1

1 + U2B2
,

(Bzφ, Bzχi
) = −BU2

[

cos2 θdφ + sin2 θ
(

cos2 χ1dχ2 + sin2 χ1dχ3

)]

1 + U2B2
.

In next section we first use the above geometries to study the giant graviton configurations

at zero temperature. The problem of finite temperature is studied in section IV.

3. Zero-temperature giant graviton with dipole field

The rotating giant graviton we will search is the D3-brane wrapping the spherical χi space-

time. The world-volume coordinate σµ are identified with the space-time coordinates by

σ0 = t, σ1 = χ1, σ2 = χ2, σ3 = χ3, (3.1)

and

φ = φ(t).

The giant graviton will be fixed on the spatial coordinates at x = y = z = 0 with a fixed

value of U = 1. To proceed, we know that the D3-brane action may be written as

S = −
∫

d4σ e−Φ
√

−(gab + Bab) +

∫

P [A(4)], (3.2)
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where gab (Bab) is the pull-back of the spacetime metric (B field) to the world-volume, and

P [A(4)] denotes the pull-back of the 4-form potential. As the B has only the component

Bzχi
or Bzφ (in N=0 case) it does not contribute to the Born-Infeld part of the action, as

the world-volume coordinate of D3-brane is described by (3.1).

3.1 N = 2 giant graviton with dipole field

Let us first the zero-temperature case of N = 2 case. As the RR field strength Fθφχ1χ2χ3
is

proportional to
√

gθφχ1χ2χ3
we can from the metric (2.6a) find that the 4-form RR potential

on the dipole-field deformed S5 is

A
(4)
φχ1χ2χ3

≈
(

sin4 θ +
B2

3
sin6 θ

)

sin χ1 cos χ1, (3.3)

in which we consider only small dipole field theory to obtain an analytic form. The asso-

ciated Lagrangian of the classical rotating D3-brane under ansatz (3.1) is

L ≈ − sin3 θ

√

1 − cos2θ φ̇2 +

(

sin4 θ +
B2

3
sin6 θ

)

φ̇, (3.4)

in which we have integrated the coordinate χi. After the calculations the momentum

conjugates to φ becomes

P ≈ cos2θsin3θ φ̇
√

1 − cos2θ φ̇2

+ sin4 θ +
B2

3
sin6 θ, (3.5)

and associated energy of the dipole-field deformed giant graviton is

H ≈ 1

cosθ

√

(

P − sin4 θ − B2

3
sin6 θ

)2

+ cos2θ sin6 θ. (3.6)

Before using (3.6) to analyze the properties of the deformed giant graviton it is useful

to know that the radius of an undeformed giant graviton is equal to its angular momentum,

i.e. R =
√

P [1] (The radius of the giant graviton, R, is the value sinθ in our notation.).

Therefore, increasing the angular momentum of the undeformed giant graviton will in-

creasing its size. In this case the giant graviton has same energy as the point-like graviton.

However, once its angular momentum is larger than 1, i.e. P > 1, the configuration will has

higher energy than that of the point-like graviton and giant graviton becomes unstable.

To proceed, let us make the following comments:

1. The “small value of B” means that it is compared to the radius of the undeformed

S5 radius RS . Note that, for a convenience, we have let the radius RS = 1.

2. Due to the deformation in the background caused by the dipole field the space de-

scribed by the coordinate χi is not a sphere, as could be read from the metric form

(2.6a). Thus the giant gravitons which wrap around χi are not of spherical shape.
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P=0.8

P=1.01

P=1.15

B=0.3

Figure 1: Energy of the giant graviton with various angular momentum P=0.8, 1.01, or 1.05 as

a function of its effective radius R under a dipole field B = 0.3. Giant graviton has maximum

effective radius R = 1 at P = Pc ≈ 1.03 and it becomes unstable as its angular momentum P > Pc.

3. As the giant graviton is not a sphere we could not use a radius to describe its shape.

However, using the metric form (2.6a) we could find its volume (VG) and, for a

convenience, we will use the “effective radius” (Rg) to describe the giant graviton in

which (Rg)
3 ∼ VG. The properties are also shown in the rest of paper.

We could now use the formula (3.6) to plot the energy of the deformed giant graviton

as a function of its effective radius Rg (which is equal to R ≡ sin θ) with various angular

momentum P under a fixed dipole field B = 0.3. The results are shown in figure 1.

Note that the point-like graviton has radius R = 0 and energy H0 = P as could be

easily read from (3.6). In the case of small dipole field, we can also from (3.6) find that

the effective radius and energy of the giant graviton are

Rg ≈
√

P − B2

6
P 5/2 (3.7)

H(Rg) ≈ P − B2

3
P 3. (3.8)

Note that above relation implies that H(Rg)− P < 0 which, at first sight, is violating the

ordinary BPS bound of undeformed theory [1, 2]. In fact, for the dipole-field deformed

theory the BPS inequality will be corrected. Although the precise form, which may be

derived form the dipole-field deformed supersymmetric algebra, remains to be investigated

we would like to make an useful discussion in below.

As we are considering the case of small dipole field the BPS inequality shall be slightly

modified. Therefore, in considering the configurations which are nearly the giant graviton

solution of (3.7), i.e. R ≈ Rg + ∆R, the energy of these states calculated from (3.6) will

become

H(R)2 ≈ 1

1 − R2

[

(

P − R4 − B2

3
(Rg + ∆R)6

)2

+ (1 − R2)R6

]

≈ 1

1 − R2

[

(

P − R4 − B2

3
R6

g

)2

+ (1 − R2)R6

]
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≈ 1

1 − R2

[

(

P − R4 − B2

3
P 3

)2

+ (1 − R2)R6

]

=

(

P − B2

3
P 3

)2

+
R2

(1 − R2)

(

P − B2

3
P 3 − R2

)2

= H(Rg)
2 +

R2

(1 − R2)

(

P − B2

3
P 3 − R2

)2

.

This indicates that the giant graviton in the N=2 background may be a BPS configuration.

The properties would also be shown in the rest of the paper (including the dual giant

graviton) and, for short, we do not discuss them anymore. However, to conclude that

the giant graviton is indeed a BPS state we need to analyze the supersymmetry of giant

graviton [2]. The problem remains to be investigated.

As the effective radius Rg ≡ sin θ the condition of maximum value of Rg = 1 then

implies that

Pc ≈ 1 +
B2

3
. (3.9)

Thus the giant gravitons is a stable configuration if its angular momentum is less than Pc,

which is an increasing function of the dipole strength. For that case of B = 0.3, which is

plotted in figure 1, we have Pc ≈ 1.03.

Thus, our analysis have shown that the giant graviton may have lower energy than

that of the point-like graviton. This means that the dipole field could stabilize the giant

graviton and suppress it from tunneling into the point-like graviton.

3.2 N = 1 giant graviton with dipole field

The case of N = 1 could be analyzed in the same way. The associated Lagrangian of the

classical rotating D3-brane under ansatz (3.1) is

L ≈ − sin3 θ

√

1 + 4B2 cos2 θ − cos2 θ φ̇2 +
(

(1 + 4B2) sin4 θ − 2B2 sin6 θ
)

φ̇, (3.10)

in which we have integrated the coordinate χi. After the calculations the associated energy

of the dipole-field deformed giant graviton is

H ≈
√

1 + 4B2 cos2 θ

cos θ

√

(

P − (1 + 4B2) sin4 θ + 2B2 sin6 θ
)2

+ cos2 θ sin6 θ. (3.11)

We could now use the above formula to plot the energy of the deformed giant graviton

as a function of sin θ with various angular momentum P under a fixed dipole field. The

results are like those shown in figure 1 and giant graviton may have lower energy than that

of the point-like graviton.

Note that the point-like graviton has radius R = 0 and energy H0 ≈ P + 2B2P as

could be easily read from (3.11). In the case of small dipole field, we can also from (3.11)

find that the effective radius and energy of the giant graviton are

Rg ≈ R
(

1 + 4B2(1 − R2)
)1/6

,

R ≡ sin θ ≈
√

P + B2
(

5P 1/2 − 10P 3/2 + 4P 5/2
)

. (3.12)

H(Rg) ≈ P + 2B2(1 − 3P + P 2)P. (3.13)

– 7 –
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As the R ≡ sin θ the condition of maximum value of R = 1 then implies that

Pc ≈ 1 + 2B2. (3.14)

Thus the giant graviton with angular momentum P < Pc will have lower energy than that

of the point-like graviton and the dipole field could stabilize the giant graviton and suppress

it from tunneling into the point-like graviton.

3.3 N = 0 giant graviton with dipole field

The case of N = 0 could be analyzed in the same way. The associated Lagrangian of the

classical rotating D3-brane under ansatz (3.1) is

L ≈ − sin3 θ

√

1 + B2 cos2 θ − cos2 θ φ̇2 + (1 − B2) sin4 θ φ̇, (3.15)

in which we have integrated the coordinate χi. After the calculations the associated energy

of the dipole-field deformed giant graviton is

H ≈
√

1 + B2 cos2 θ

cos θ

√

(

P − (1 − B2) sin4 θ
)2

+ cos2 θ sin6 θ. (3.16)

We could now use the above formula to plot the energy of the deformed giant graviton

as a function of sin θ with various angular momentum P under a fixed dipole field. The

results show that giant graviton always have larger energy than that of the point-like

graviton.

Note that the point-like graviton has radius R = 0 and energy H0 ≈ P + B2P/2 as

could be easily read from (3.16). In the case of small dipole field, we can also from (3.16)

find that the effective radius and energy of the giant graviton are

Rg ≈ R
(

1 + B2(1 − R2)
)1/6

,

R ≡ sin θ ≈
√

P +
B2

4

(

−3P 3/2 + 5P 3/2
)

(3.17)

H(Rg) ≈ P +
B2

2
(1 + P )P. (3.18)

As H(Rg) > H0 the giant graviton, if it exists, will always have a larger energy than that

of the point-like graviton.

In conclusion, in this section we have shown that, for the cases of N=2 and N =1 the

rotating D3-brane could be blowed up to the stable spherical configuration and it has a

less energy than the point-like graviton. The giant graviton configuration is stable only if

its angular momentum was less than a critical value of Pc which is an increasing function

of the dipole strength. For the case of non-supersymmetric theory, however, the spherical

configuration has a larger energy than the point-like graviton.

4. Zero-temperature dual giant graviton with dipole field

In this section we first transform the supergravity solutions found in section II to the global

coordinate and then use the new coordinate to find the dual giant graviton solution. We

will see that the dipole field always render the dual giant graviton to be more stable than

the point-like graviton.
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4.1 Metric

To consider the dual giant graviton on the AdS [2] we will change the relevant coordinate

to be the global coordinate following the Witten prescription [19]. Let use first investigate

the following line element

ds2 = −(1+r2)dτ2+r2

(

dα2
1

1+r2B4 sin2 θ
+sin α2

1dα2
2+sin α2

1 sinα2
2dα2

3

)

+
dr2

1+r2
+cos θ2dφ2.

(4.1)

Using the new coordinates

U = Br, τ = Bt, (4.2)

then equation (4.1) becomes

ds2 ≈ −U2dt2+U2 1

B2

(

dα2
1

1 + U2B2 sin2 θ
+ sin α2

1dα2
2 + sinα2

1 sin α2
2dα2

3

)

+
dU2

U2
+cos θ2dφ2,

(4.3)

in the case of B ≪ 1. As that described in [24], in the limit B → 0 the original S3

described by the coordinates αi become flat which may be described by x, y, z, as the

radius 1
B becomes infinite. Thus the above line element could be written as

ds2 = U2dt2+U2

(

dz

1 + U2B2 sin2 θ
+ dx2 + dy2

)

+
dU2

U2
+cos θ2dφ2, for N = 2. (4.4)

This is the part of line element of (2.6a) in the case of UT = 0, which is the case of N = 2.

Therefore we could use (4.1) to study the dual giant graviton on the AdS in the case of

small dipole field B.

Through a similar consideration we could find the relevant line elements for the cases

of N = 2, N = 1 and N = 0 at finite temperature. The results are

ds2 = −
(

1 + r2 − r4
T

r2

)

dτ2 + r2

(

dα2
1

1 + r2B4 sin2 θ
+ sin α2

1dα2
2 + sin α2

1 sin α2
2dα2

3

)

+
dr2

1 + r2 − r4

T

r2

+ cos θ2dφ2, for N = 2, (4.5)

ds2 = −
(

1 + r2 − r4
T

r2

)

dτ2 + r2

(

dα2
1

1 + r2B4(3 cos2 θ + 1)
+ sin α2

1dα2
2 + sin α2

1 sinα2
2dα2

3

)

+
dr2

1 + r2 − r4

T

r2

+

[

cos2 θ − 4r2B4 cos4 θ

1 + 42B4(3 cos2 θ + 1)

]

dφ2, for N = 1, (4.6)

ds2 = −
(

1 + r2 − r4
T

r2

)

dτ2 + r2

(

dα2
1

1 + r2B4
+ sin α2

1dα2
2 + sin α2

1 sin α2
2dα2

3

)

+
dr2

1 + r2 − r4

T

r2

+

[

cos2 θ − r2B4 cos4 θ

1 + 42B4

]

dφ2, for N = 0, (4.7)

in the case of small value of dipole field B.

4.2 Dual giant graviton solutions

We can now use the above global coordinate to investigate the dual giant graviton at zero

temperature. The thermal dual giant graviton will be investigated in the next section

– 9 –
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i) N = 2: using the ansatz [2]

σ0 = τ, σ1 = α1, σ2 = α2, σ3 = α3, (4.8)

and

φ = φ(t), θ = θ0.

the associated energy of the N = 2 dual giant graviton calculated from (4.5) at rT = 0 is

H ≈
√

(1 + r2) (cos2 θ0P 2 + r6) − r4 − B4r6sin2 θ0 cos4 θ0, (4.9)

in the case of small value of dipole field B. The solution of point-like graviton of radius

r = 0 has and energy H(0) = P cos θ0.

To proceed, let us make the following comments:

1. The “small value of B” means that it is compared to the radius of the undeformed

AdS radius RAdS. Note that, for a convenience, we have let the radius RAdS = 1.

2. Due to the deformation in the background caused by the dipole field the space de-

scribed by the coordinate αi is not a sphere, as could be read from the metric form

(4.5). Thus the dual giant gravitons which wrap around αi are not of spherical shape.

3. As the dual giant graviton is not a sphere we could not use a radius to describe its

shape. However, using the metric form (4.5) we could find its volume (VG) and, for a

convenience, we will use the “effective radius” (rg) to describe the dual giant graviton

in which (rg)
3 ∼ VG. The properties are also shown in the rest of paper.

The dual giant graviton effective radius and their associated energy are

rg =
r

(

1 + r2B2 sin2 θ0

)1/6
, r ≈

√
P cos θ0 + B4P

3

2 sin2 θ0 cos
3

2 θ0, (4.10)

H(rg) ≈ P cos θ0 −
13B4P 3

3
sin2 θ0 cos3 θ0. (4.11)

As H(rg) < H(0) the dual giant graviton will always have a less energy than that of the

point-like graviton.

ii) N = 1: using the ansatz (4.8) with θ0 = 0 the associated energy of the N = 1 dual

giant graviton calculated from (4.6) at rT = 0 is

H ≈
√

(1 + r2) (P 2 + r6 − 4r4B4) − r4 − 4

3
B4r6, (4.12)

in the case of small value of dipole field B. The solution of point-like graviton of radius

r = 0 has an energy H(0) = P . The dual giant graviton effective radius and their associated

energy are

rg =
r

(1 + 4r2B2)1/6
, r ≈

√
P + B4P

3

2 (5P + 6), (4.13)

H(rg) ≈ P − 10

3
B4P 3. (4.14)

As H(rg) < H(0) the dual giant graviton will always have a less energy than that of the

point-like graviton.
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iii) N = 0: using the ansatz (4.8) with θ0 = 0 the associated energy of the N = 0 dual

giant graviton calculated from (4.7) at rT = 0 is

H ≈
√

(1 + r2) (P 2 + r6 − r4B4) − r4 − 1

3
B4r6, (4.15)

in the case of small value of dipole field B. The solution of point-like graviton of radius

r = 0 has an energy H(0) = P . The dual giant graviton effective radius and their associated

energy are

rg =
r

(1 + r2B2)1/6
, r ≈

√
P +

1

4
B4P

3

2 (5P + 6), (4.16)

H(rg) ≈ P − 5

6
B4P 3. (4.17)

As H(rg) < H(0) the dual giant graviton will always have a less energy than that of the

point-like graviton.

In conclusion, we have shown that the dipole field always render the dual giant graviton

to be more stable than the point-like graviton. Note that in the AdS/CFT correspondence,

we identify the energy H in global coordinates as the operator dimension in the field theory

and P as the R-charge, so we have computed the dimensions of operators corresponding

to the brane configuration [20 – 22].

5. Thermal giant graviton and thermal dual giant graviton

5.1 Thermal giant graviton

Let us first consider the rotating D3-brane wraps the spherical part of S5 without the

dipole. The relevant metric read from (2.6a) in the case of B = 0 is

ds2 = −U2

(

1 − U4
T

U4

)

dt2+dθ2+cos2 θdφ2+sin2 θ
(

dχ2
1 + cos2 χ1dχ2

2 + sin2 χ1dχ2
3

)

. (5.1)

Using the ansatz (3.1) the associated energy of the thermal giant graviton is

H =

√

1 − U4
T

cos θ

√

(

P − sin4 θ
)2

+ cos2 θ sin6 θ, (5.2)

in which the giant graviton is moving along U = 1. As the temperature effect (T = UT /π)

only shows in an overall factor it thus does not affect the property of giant graviton.

In a similar way the thermal giant gravitons with dipole-field deformation have the

following energy

H ≈

√

1 − U4
T

cosθ

√

(

P − sin4 θ − B2

3
sin6 θ

)2

+ cos2θ sin6 θ,

N = 2, (5.3)

H ≈
√

1 − U4
T

√
1 + 4B2 cos2 θ

cos θ

√

(

P − (1 + 4B2) sin4 θ + 2B2 sin6 θ
)2

+ cos2 θ sin6 θ,

N = 1, (5.4)
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H ≈
√

1 − U4
T

√
1 + B2 cos2 θ

cos θ

√

(

P − (1 − B2) sin4 θ
)2

+ cos2 θ sin6 θ,

N = 0. (5.5)

Comparing above equations with (3.6), (3.11), and (3.16) we see that the temperature

effect (T = UT /π) only shows in an overall factor it thus does not affect the property of

giant graviton. We therefore conclude that the temperature does not change the property

of the giant graviton with dipole field.

5.2 Thermal dual giant graviton

We next consider the rotating D3-brane wraps the spherical part of AdS5 without the

dipole. The relevant metric read from (4.5) with B = 0 is

ds2 = −
(

1+r2− r4
T

r2

)

dt2+r2
(

dα2
1 + sin α2

1dα2
2 + sin α2

1 sin α2
2dα2

3

)

+
dr2

1 + r2 − r4

T

r2

+ dφ2

(5.6)

Using the ansatz [2]

σ0 = t, σ1 = α1, σ2 = α2, σ3 = α3, (5.7)

and

φ = φ(t).

the associated energy of the thermal dual giant graviton is

H =

√

(

1 + r2 − r4
T

r2

)

(P 2 + r6) − r4, (5.8)

In the case of rT = 0 the dual giant graviton has radius rg =
√

P with energy H(rg) =

P which has the same value of the point-like graviton of r = 0 [2].

For the case of rT 6= 0, as the minimum value of r0 satisfies the relation 1+r2
0 −

r4

T

r2

0

= 0

the associated energy becomes H(r0) = −r4
0 which has a negative value. However, for

the dual giant graviton the associated energy is a positive value. (The property could be

seen in the case of small rT , in which the giant graviton energy is slightly different from

H(Rg) = P .)

For a convenience we use (5.8) to plot the energy of the dual giant graviton as a

function of its radius r with the angular momentum P = 5 for the cases of rT = 0 and

rT = 1. The results are shown in figure 2.

In a similar way the thermal dual giant gravitons with small dipole-field deformation

have the following energy

H ≈
√

(

1 + r2 − r4
T

r2

)

(cos2 θ0P 2 + r6) − r4 − B4r6sin2 θ0 cos4 θ0,

N = 2. (5.9)

H ≈
√

(

1 + r2 − r4
T

r2

)

(P 2 + r6 − 4r4B4) − r4 − 4

3
B4r6,

N = 1. (5.10)
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Figure 2: Energy of the dual giant graviton with angular momentum P = 5 as a function of

its radius r. At zero temperature (rT = 0) the dual giant graviton has the same energy as the

point-like graviton. However, at finite temperature (rT = 1) the configuration with a minimum

value of r0 (≈ 0.786) has a negative energy which is less then the dual giant graviton energy.

H ≈
√

(

1 + r2 − r4
T

r2

)

(P 2 + r6 − r4B4) − r4 − 1

3
B4r6,

N = 0. (5.11)

Through the same arguments we see that the energy of configuration with a minimum

radius r0, which satisfies the relation 1 + r2
0 − r4

T

r2

0

= 0, will have a negative value while

the energy of dual giant graviton is a positive value. We can therefore conclude that the

temperature will render the dual giant graviton to be unstable.

6. Conclusion

Since Witten [19] had shown that the Ads-Schwarzschild spacetime could be used to study

the dual finite temperature gauge theory many literatures has investigated the serval prob-

lems in the dual gravity side, including the finite Wilson-Polyakov Loop [24, 25]. In this

paper, we study the giant graviton with a non-commutative dipole field deformation on

the finite temperature system. As the giant graviton provides a very natural framework

for the study of the gauge theory/gravity correspondence [20] and the candidate operators

dual to giant gravitons had been proposed in [21 – 23] our investigations thus provides a

correspondence which dual to a finite temperature non-commutative dipole field theories.

In this paper, we use the type II near-extremal 3D-branes solution to construct the

supergravity backgrounds by applying the T-duality and smeared twist, which dual to

the 4D finite temperature non-commutative dipole field theories. We have consider the

zero-temperature system in which, depending on the property of dipole vectors it may

be N=2, N=1 or N=0 theory. We first show that, for the cases of N=2 and N =1 the

rotating D3-brane could be blowed up to the stable spherical configuration which is called

as giant graviton and has a less energy than the point-like graviton. The giant graviton

configuration is stable only if its angular momentum was less than a critical value of Pc

– 13 –
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which is an increasing function of the dipole strength. For the case of non-supersymmetric

theory, however, the spherical configuration has a larger energy than the point-like graviton.

We also transform the supergravity background to the global coordinate following the

Witten prescription [19] and find that the dipole field always render the dual giant graviton

to be more stable than the point-like graviton. The relation of dual giant graviton energy

with its angular momentum, which in the AdS/CFT correspondence being the operator

anomalous dimension is obtained. We furthermore have considered the finite-temperature

system and show that the temperature does not change the property of the giant graviton,

while it will render the dual giant graviton to be unstable. Finally, the thermal property of

giant graviton on the other dipole field deformed background [26] is interesting and remains

to be studied.
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